The generator matrix 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 X 1 1 1 1 1 1 1 1 1 1 1 4X 1 1 1 4X 2X 1 0 4X 1 1 1 1 1 X 1 1 1 1 1 1 1 1 1 1 2X 1 1 1 1 1 1 1 1 4X 4X 1 0 1 1 2 4 3 3X+1 0 2 1 3 3X+4 0 3X+1 3X+4 3 1 2 0 3 1 3X+4 3X+1 2 X+3 X+2 3X+4 1 X X+2 2X+3 3X+1 X+2 4X+3 X+1 4X+4 3X 2X+4 0 1 4X+1 4X+3 4X+1 1 1 4X 1 1 4X+1 X+2 2X X+3 4X+3 1 2 X+4 3X X+1 3X+2 4 X+1 X+4 4X+3 4X+3 1 3X+3 X+3 2X+2 2 4X+2 2X 3X+3 3X+3 1 1 0 0 0 3X 0 0 0 0 X 2X 3X 2X 3X 2X 4X 0 2X X 3X 2X X X 3X 2X 0 2X X 4X 2X 0 3X 4X X 3X 0 3X X 2X X 3X 2X X 2X 2X 4X 2X 2X X X 4X X 3X 4X X 2X 2X 4X 4X 2X 2X 0 0 4X 0 0 3X 0 X 4X 2X 3X 2X 2X 3X 2X 2X 0 0 0 0 X 0 X 3X 3X 0 2X 2X 4X 2X 2X 3X X 0 2X 3X X 3X 0 0 3X 2X X 2X 4X X X 4X X X 2X 3X 0 2X 2X 4X X 3X 3X 0 2X 2X 3X 4X 0 0 4X 0 3X 0 2X 4X 2X 0 4X 3X 2X 3X 4X X 0 2X X 3X 0 X 0 4X 0 X X 2X 4X 0 0 0 0 3X 3X 2X 4X 4X X 4X 4X 2X 0 0 2X 3X 3X 0 X 0 X 3X 4X 3X 3X 2X X X X 4X 2X 3X 2X X 3X 0 3X 3X 3X 4X 4X X 2X 3X 2X 3X 2X 0 2X 4X X 4X X 3X 3X 3X 4X 3X 3X 4X X 4X 0 0 2X X 4X 2X 2X X 0 4X 0 4X 4X generates a code of length 76 over Z5[X]/(X^2) who´s minimum homogenous weight is 280. Homogenous weight enumerator: w(x)=1x^0+116x^280+40x^281+40x^283+20x^284+772x^285+140x^286+340x^287+580x^288+400x^289+1880x^290+820x^291+1140x^292+1160x^293+1340x^294+3620x^295+1660x^296+1720x^297+2140x^298+2040x^299+4768x^300+2660x^301+2920x^302+2740x^303+4040x^304+7196x^305+3920x^306+3420x^307+3300x^308+3320x^309+6076x^310+2320x^311+2280x^312+2060x^313+1340x^314+2688x^315+940x^316+680x^317+480x^318+512x^320+156x^325+124x^330+92x^335+52x^340+48x^345+20x^350+4x^355 The gray image is a linear code over GF(5) with n=380, k=7 and d=280. This code was found by Heurico 1.16 in 13.8 seconds.